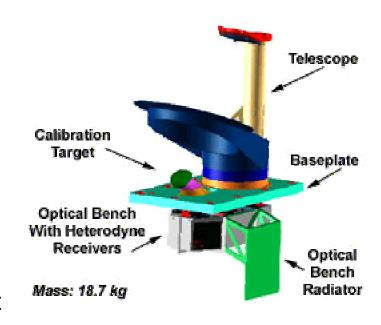
A Simple Tool for Design and Analysis of Multiple-Reflector Antennas in a Multi-Disciplinary Environment

Tom Cwik, D. Katz, A. Borgioli*, C. Fu, W. Imbriale, V. Jamnejad, P. Springer

<u>Jet Propulsion Laboratory</u>

*University of California at Santa Barbara


July 14, 1999 IEEE AP-S , Orlando FL

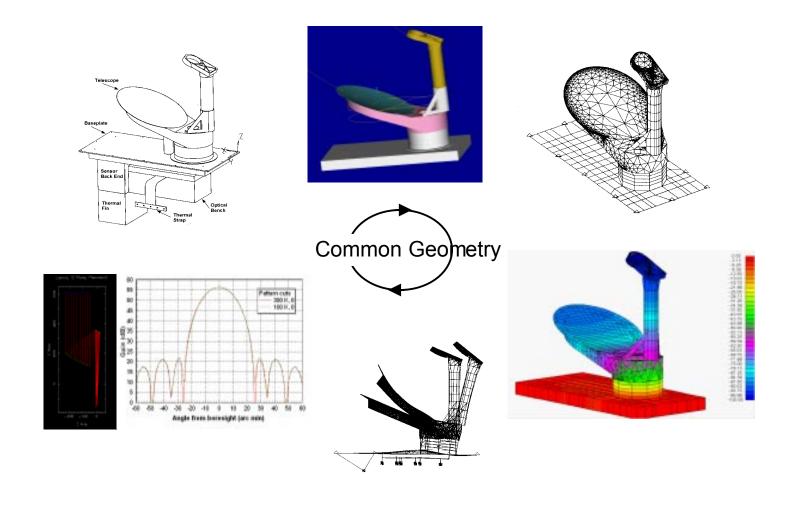
MOTIVATION

- For the foreseeable future, JPL is proposing, designing and building microwave and millimeter wave instruments
- Instruments meet design criteria obtained from science mission goals
 - Beamwidth, sidelobes
 - Pointing
 - Gain
- ★ Design criteria are functions of space environment
 - Fluctuating thermal (deep space and earth orbiting)
 - Mechanical due to thermal load
- Software design tools and environments maturing and becoming integrated

MIRO Instrument (JPL) www.miro.jpl.nasa.gov

Current Design Tools and Process

- Disciplines/Tools:
 - CAD
 Pro/Engineer
 CV
 IDFAS
 - Meshing FEMAP
 - Structural NASTRAN
 - Thermal TRASYS SINDA
 - Antenna/OpticsMACOSPOPO


- Each tool is used by an analyst/designer, who works in one discipline
- When one analyst completes a model, it is passed to the next

* This work focuses on antenna electromagnetic design, and how it is connected to the other disciplines through a common digital geometry

MODTool (Millimeter-wave Optics Design Tool)

MODTool Goals

- Develop new code only if necessary
 - Try to use/reuse:

Commercial applications

Previously developed JPL applications

- Try to develop code so that it can be used for other future projects
 Use standard packages/tools
 Always think beyond this project
- * Ensure users on multiple platforms can easily use tool (client-server)
 - Client written in Tcl/Tk

Freely available over the web

Available for Unix, PC, Mac

Server also written in Tcl/Tk, but on a specific type of machine
 Uses compiled C code using Unix libraries for user authentication

COMMON GEOMETRY

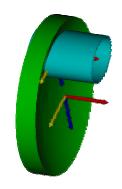
- Much of the underlying effort was spent in defining a common geometry that can be used by structures, thermal and electromagnetic design
 - Thermal: 100s of mesh points (degrees of freedom)
 - Structures: 1000s of mesh points
 - Electromagnetic: 10,000s of mesh points
- * A common analytic description of the antenna surfaces was defined, and any distortions produced from structural/thermal analysis codes were interpolated and added to analytic description
 - Struts, backup structure, spacecraft structures models used in structural/thermal analysis; data stripped for use with electromagnetic analysis

Interface and Functionality

- ★ Designer starts client code on designer's machine (The Application Interface)
 - Designer must enter username and password
 - Designer must select existing or new project on which to work
- Client opens socket to server (Automatic and Invisible)
 - Server validates username and password
 - Server creates local work directory
- Designer may then work in one of six modes:
 - Design
 - Prescription
 - Geometric Optics Analysis
 - Physical Optics Analysis
 - Submitting a Mesh

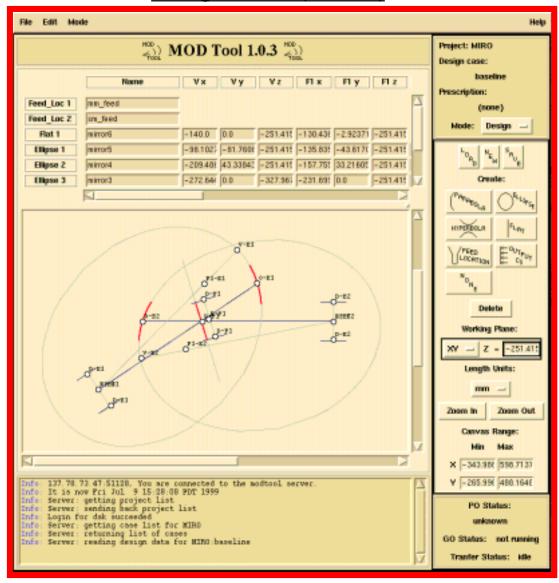
Submitting a Load

Interface to thermal and structural design



Design Mode

- Allows designer to create or modify a design
- * A design is the description of a set of antenna elements
 - Conic sections:
 - paraboloids, hyperboloids, ellipsoids, flat plates, all cut by an elliptical cutting cylinder
 - Feed location and output coordinate system definitions
- The elements are shown graphically, and the values which control the elements are shown as a table
 - Either the data in the table or the graphical data may be varied
 - The two displays are linked changes in one are reflected in the other



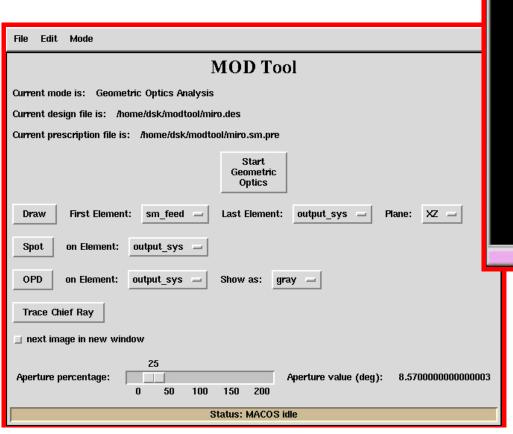
Design Mode (Cont'd)

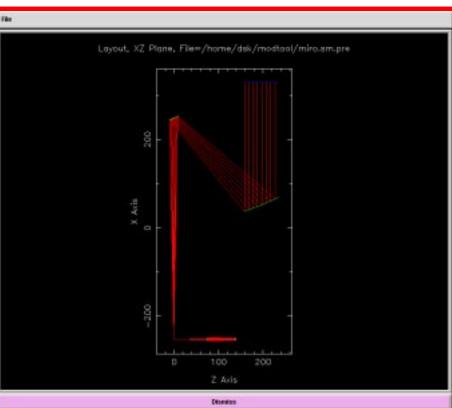
Prescription Mode

- Allows the user to create or modify a prescription
- * A prescription is an ordered list of a subset of the optical elements from the design
 - Determines which elements should be analyzed and in what order
 - Needed because instruments can have multiple "optical" paths
 Instrument will be used at multiple frequencies
 Instrument has multiple modes of operation
- * Elements may be modified in location or orientation from the base elements as stored in the design
 - Used for tolerancing analysis

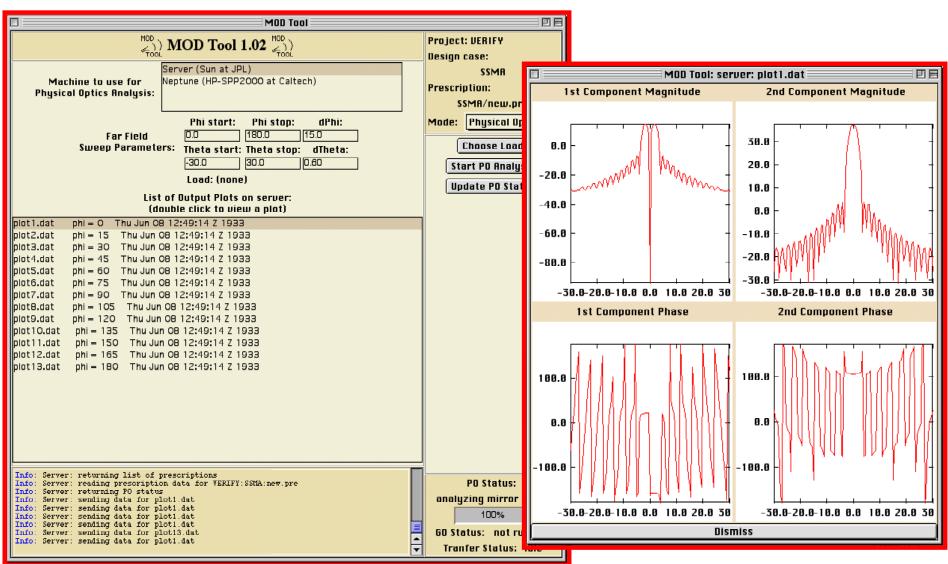
Prescription Mode (Cont'd)

File Edit Mode							
MOD Tool							
Current mode is: Prescription							
Current design file is: /home/dsk/modtool/miro.des							
Current prescription file is: /home/dsk/modtool/miro.sm.pre							
Load Save Choose Prescription Prescription File File from Design Data							
Frequency: 564.0 GHz — Length Units: mm —							
Feed File: sm_feed.dat Browse							
Distance into feed of Rotation Point: 0.0							
	g/l d	lx dy	dz	rx	ry	rz	Ī
sm_feed	G _ 0.0	0.0	0.0	0.0	0.0	0.0	
mirror5	G = 0.0	0.0	0.0	0.0	0.0	0.0	
mirror6	G = 0.0	0.0	0.0	0.0	0.0	0.0	
mirror3	G — 0.0	0.0	0.0	0.0	0.0	0.0	
mirror2	G — 0.0	0.0	0.0	0.0	0.0	0.0	
mirror1	G — 0.0	0.0	0.0	0.0	0.0	0.0	
output_sys	G — 0.0	0.0	0.0	0.0	0.0	0.0	


GO Analysis Mode


- Allows the user to perform geometric optics analysis on a design and prescription
- These files are converted to a MACOS input set
 - MACOS provides computationally efficient general ray-trace, differential ray-trace, and scalar-diffraction calculation capabilities
 - Developed at JPL, starting in 1989
 - Commercial and U.S. Government versions are available
- The files must be on the server, which does the conversion, and runs MACOS
 - Only the general ray-tracing capabilities of MACOS are currently supported through MODTool

GO Analysis Mode (Cont'd)


Physical Optics Mode

- Physical Optics (POPO) code
 - Developed at JPL over a long period of time (1971 present)
 - Versions exist for PCs, workstations, Cray J90, T3D, Beowulf
- * Can analyze surfaces from design and prescription mode
- Can also add deformations from load file before analyzing
 - Done using MATLAB to read mesh and load data, and to calculate coefficients for a bipolynomial (or other) surface approximating the deformation
 - MATLAB is run on the server, where the design, prescription, mesh and load files are stored
- POPO code is run on supercomputers
 - Using username and password for that machine supplied by user
 - Ensures correct accounting and time-charging
 - Expect is used between the server and the supercomputer

PO Mode (Cont'd)

Mesh and Loads

- Used by structural, thermal and electromagnetic engineers
- Submits a mesh of an instrument from a client to the server
 - Currently, meshes must be FEMAP neutral files
 - One layer is used for the elements that make up each optical element
- Validates that mesh and the "analytic" design are the same geometry
- ★ Used with the load data for physical optics analysis of loaded instruments
- Deformations come from structural or thermal loads
 - How the instrument will change from the original design when it is in its operating environment
- The load data must be logically tied to a set of mesh data
- This data is used in the physical optics analysis, with the corresponding mesh data

Design and Analysis of Multiple-Reflector Antennas Current Work

- * Adding ZEMAXS 3D optical software as addition to Design input mode
- * Interfacing to tool set in JPL TEAM I (Instrument) a concurrent engineering center

Ocean-Salinity Soil-Moisture Integrated Radiometer-Radar Imaging System (OSIRIS) E. Njoku-JPL (Proposal)

